Hooke's Law (From OCR 4730)

Q1, (Jun	<u>2006, Q6)</u>			
(i)	T = 1470x/30	B1		
	[49x = 70x9.8]	M1		For using T = mg
	x = 14	A1		
	Distance fallen is 44m	A1ft	4	
(ii)	PE loss = 70g(30 + 14)	B1ft		
` '	EE gain = $1470x14^2/(2x30)$	B1ft		
	$[\frac{1}{2} 70v^2 = 30184 - 4802]$	M1		For a linear equation with
	,			terms representing KE, PE
				and EE changes.
	Speed is 26.9ms ⁻¹	A1	4	AG
OR				
(ii)	$[0.5 \text{ v}^2 = 14g - 68.6 + 30g]$	M1		For using Newton's 2 nd law
• •				(vdv/dx = g - 0.7x),
				integrating (0.5 $v^2 = gx -$
				$0.35x^2 + k$), using $v(0)^2 =$
				60g→ k = 30g, and
				substituting $x = 14$.
	For 14g + 30g	B1ft		
	For ∓68.6	B1ft		Accept in unsimplified form.
	Speed is 26.9ms ⁻¹	A1	4	AG
(iii)	PE loss = $70g(30 + x)$	B1ft		
	EE gain = $1470x^2/(2x30)$	B1ft		
	$[x^2 - 28x - 840 = 0]$	M1		For using PE loss = KE
				gain to obtain a 3 term
				quadratic equation.
	Extension is 46.2m	A1	4	
OR				
(iii)		M1		For identifying SHM with
				n ² =
				1470/(70x30)
		M1		For using $v_{max} = An$
	$A = 26.9 / \sqrt{0.7}$	A1		
	Extension is 46.2m	A1	4	
			-	

Q2, (Jan 2009, Q7)

	G : : EE 20 7/2 2)	l n.	1
(i)	Gain in EE = $20x^2/(2x2)$	B1	
			Accept 0.8gx if gain in KE is
	Loss in GPE = $0.8g(2 + x)$	B1	$\frac{1}{2} 0.8(v^2 - 19.6)$
	$\begin{bmatrix} \frac{1}{2} \ 0.8v^2 = (15.68 + 7.84x) - 5x^2 \end{bmatrix}$ v ² = 39.2 + 19.6x - 12.5x ²	M1	For using the p.c.energy
	$v^2 = 39.2 + 19.6x - 12.5x^2$	A1	AG
	7 39.2 · 19.0k 12.5k	[4]	110
(ii)	(a)	M1	For attempting to solve $v^2 = 0$
(11)	Maximum extension is 2.72m	A1	Tot attempting to solve v
	Waximum exension is 2.72m		
		[2]	F 1: 20 /2 00 C
	(b)		For solving $20x/2 = 0.8g$ or for
			differentiating and attempting to solve
	[19.6 - 25x = 0,		$d(v^2)/dx = 0$ or $dv/dx = 0$ or for
	$v^2 = 46.8832 - 12.5(x - 0.784)^2$	M1	expressing v^2 in the form $c - a(x - b)^2$.
	x = 0.784 or $c = 46.9$	A1	
			For substituting $x = 0.784$ in the
	$[v_{\text{max}}^2 = 39.2 + 15.3664 - 7.6832]$	M1	expression for v^2 or for evaluating \sqrt{c}
	Maximum speed is 6.85ms ⁻¹	A1	expression for v or for evaluating \sqrt{c}
	Waximam speed is 0.05ms		
		[4]	
	(c)		For using Newton's second law (3 terms
		M1	required) or $a = v \frac{dv}{dx}$
	$\pm (0.8g - 20x/2) = 0.8a$		
	or $2v dv/dx = 19.6 - 25x$	A1	
	$a = \pm (9.8 - 12.5x)$		
	or $\ddot{y} = -12.5y$ where $y = x - 0.784$	A1	
	$[a _{\text{max}} = 9.8 - 12.5 \text{x} 2.72]$		For substituting $x = ans(ii)(a)$ into $a(x)$ or
		M1	$y = ans(ii)(a) - 0.784$ into $\ddot{y}(y)$
	or $ \ddot{y}_{\text{max}} = -12.5(2.72 - 0.784]$	A1	y = ans(n)(a) = 0.764 mto y (y)
	Maximum magnitude is 24.2ms ⁻²	[5]	
		[2]	

Q3, (Jan 2010, Q5)

<u>45, (Ja</u>	<u>11 2010, Q3)</u>		
(i)		M1	For using $EE = \lambda x^2/2L$ and $PE = Wh$
	Loss of EE = $120(0.5^2 - 0.3^2)/(2 \times 1.6)$		
	and gain in PE = 1.5×4	A1	
	and gain in L 1.3.4	M1	For comparing EE loss and DE cain
	A . B 11 AFE : : BE / ()	IVII	For comparing EE loss and PE gain
	v = 0 at B and loss of EE = gain in PE (= 6)		
	→distance AB is 4m	A1	AG
		[4]	
(ii)	[120e/1.6 = 1.5]	M1	For using T = mg and T = $\lambda x/L$
	e = 0.02	A1	
	Loss of EE = $120(0.5^2 - 0.02^2)/(2 \times 1.6)$	111	
	(or $120(0.3^2 - 0.02^2)/(2 \times 1.6)$)	B1ft	ft incorrect a only
		ын	ft incorrect e only
	Gain in PE = $1.5(2.1 - 1.6 - 0.02)$		
	(or 1.5(1.9 + 1.6 + 0.02) loss)	B1ft	ft incorrect e only
	[KE at max speed = $9.36 - 0.72$		For using KE at max speed
	(or 3.36 + 5.28)	M1	= Loss of EE $-$ Gain (or $+$ loss) in PE
	$\frac{1}{2}(1.5/9.8)v^2 = 9.36 - 0.72$	A1	` '
	Maximum speed is 10.6 ms ⁻¹	A1	
	Waximum speed is 10.0 ms	l	
		[7]	
	First alternative for (ii)		
	x is distance AP		
	$\left[\frac{1}{2}(1.5/9.8)v^2 + 1.5x + 120(0.5 - x)^2/3.2 = \right]$		
	$120 \times 0.5^2 / 3.2$	M1	For using energy at $P = \text{energy at } A$
	KE and PE terms correct	A1	2 23
	EE terms correct	A1	
	$v^2 = 470.4x - 490x^2$	A1	
		l	Γ_{2} at the section Γ_{2} and Γ_{2} Γ_{2}
	[470.4 - 980x = 0]	M1	For attempting to solve $dv^2/dx = 0$
	x = 0.48	A 1	
	Maximum speed is 10.6 ms ⁻¹	A1	
	Second alternative for (ii)		
	[120e/1.6 = 1.5]	M1	For using $T = mg$ and $T = \lambda x/L$
	e = 0.02	A1	
	$[1.5 - 120(0.02 + x)/1.6 = 1.5 \ddot{x}/g]$	M1	For using Newton's second law
	[1.3 - 120(0.02 + x)/1.0 - 1.3 x/g]	1411	
			For obtaining the equation in the form
			$\ddot{x} = -n^2x$, using (AB – L – e_{equil}) for
		M1	amplitude and using $v_{max} = na$.
	$n = \sqrt{490}$	A1	
	n v 170		
	a = 0.48	A 1	
	Maximum speed is 10.6 ms ⁻¹	A1	
	THEATHER SPECULO TO TO THIS	111	

Q4, (Jan 2012, Q4)

(i)	EE gain = $44.1x^2 \div (2x0.75)$	B1		allow use of $(e + x)$ for x
	PE loss = $1.8g(0.75 + x)$	B1	ignore signs	
	$[x^2 - 0.6x - 0.45 = 0]$	M1	For using EE gain = PE loss	$44.1x^2-26.46x-19.845=0$ allow
	Extension is 1.03 m	A1		sign errors 1.0348469
	Extension is 1.05 m			1.0348409
		[4]		
(ii)		M1	For using $T = \lambda x/L$	
	$\frac{44.1 \times 1.03}{0.75} - 1.8 \times 9.8 = -1.8 \ddot{x}$	M1	For using Newton's 2 nd law	allow missed g , m , sign error
	0.75			
		A1ft	ft their '1.03' from (i)	allow sign error
	Acceleration is -24.0 ms ⁻²	A1	direction must be clear	1.03 → - 23.84666
		[4]		$1.035 \rightarrow -24.01$

Q5, (Jun 2007, Q6)

(i) $[T = 2058x/5.25]$	M1		For using $T = \lambda x/L$
$2058x/5.25 = 80 \times 9.8 \qquad (x = 2)$	A1		
OP = 7.25m	A1	3	AG From 5.25 + 2
(ii) Initial PE = $(80 + 80)g(5)$ (= 7840)	B1		
or (80 + 80)gX used in energy equation			
Initial KE = $\frac{1}{2}$ (80 + 80)3.5 ² (= 980)	B 1		
[Initial EE = $2058x2^2/(2x5.25)$ (= 784),	M1		For using $EE = \lambda x^2/2L$
Final EE = $2058x7^2/(2x5.25)$ (= 9604), or			_
$2058(X+2)^2/(2x5.25)$			
[Initial energy = $7840 + 980 + 784$,	M1		For attempting to verify
final energy = 9604			compatibility with the
or $1568X + 980 + 784 = 196(X^2 + 4X + 4)$			principle of conservation of
$196X^2 - 784X - 980 = 0$			energy, or using the principle
-			and solving for X
Initial energy = final energy or $X = 5 \rightarrow P&Q$ just reach	A 1	5	AG
the net			
(iii) [PE gain = $80g(7.25 + 5)$]	M1		For finding PE gain from net
			level to O
PE gain = 9604	A1		
PE gain = EE at net level → P just reaches O	A1	3	AG
(iv) For any one of 'light rope', 'no air	B1		
resistance', 'no energy lost in rope'			
For any other of the above	B1	2	

FIRST ALTERNATIVE METHOD FOR PART (ii)			
[160g - 2058x/5.25 = 160v dv/dx]	M1		For using Newton's second law with a = v dv/dx, separating the variables and attempting to integrate
$v^2/2 = gx - 1.225x^2 $ (+ C)	A1		Any correct form
	M1		For using $v(2) = 3.5$
C = -8.575	A1		
$[v(7)^{2}]/2 = 68.6 - 60.025 - 8.575 = 0 \implies P\&Q \text{ just}$ reach the net	A 1	5	AG

SECOND ALTERNATIVI	E METHOD FOR PART			
$\ddot{x} = g - 2.45x$	(=-2.45(x-4))	B1		
_		M1		For using $n^2 = 2.45$ and $v^2 = n^2(A^2 - (x - 4)^2)$
$3.5^2 = 2.45(A^2 - (-2)^2)$	(A=3)	A 1		
[(4-2)+3]		M1		For using 'distance travelled downwards by P and Q = distance to new equilibrium position + A
distance travelled downwar just reach the net	rds by P and Q = $5 \rightarrow P&Q$	A1	5	AG

Q6, (Jun 2012, Q7)

(i)		M1	For using EPE = $\lambda x^2/2L$ for both strings for one position
	$E_{(AP=2.9)} = 120 \times 0.9^2 / 4 + 180 \times 0.1^2 / 6$		
	= (24.3 + 0.3) and		
	$E_{(AP=2.1)} = 120 \times 0.1^2/4 + 180 \times 0.9^2/6$		
	= $(0.3 + 24.3)$ \rightarrow same for each position	A1	24.6 seen twice
	Conservation of energy $\rightarrow v = 0$ when AP		Need to point out that $v = 0$ when $AP = 2.1$ or $KE = 0$
	= 2.1, string taut here so taut throughout	D.	B
	motion – oe,	B1	Dep on M1A1
· · · ·		[3]	
(ii)	$T_A = 120(0.5 + x)/2$, $T_B = 180(0.5 - x)/3$	B1	soi
	[(30 - 60x) - (30 + 60x) = (+/-)0.8a]	M1	For using Newton's 2 nd law; allow omission of 0.8
	a = -150x	A1	With no wrong working
		[3]	2
(iii)	SHM because $a = -k$ (where $k > 0$)	M1	SHM because $a = -\omega^2 x$ or in words
	$[T = 2\pi/\sqrt{150}]$	M1	For using $T = 2 \pi / n$; must follow from (ii)
	Time interval is 0.257 s	A1 FT	FT π ÷ candidate's n 0.256509
		[3]	
(iv)	$[x = 0.4 \cos(\sqrt{150} \times 0.6) = 0.194]$	M1	For using $x = a\cos(0.6n)$, where n follows from (ii) and a is numerical.
	[distance = $4a + (a - 0.194)$]	M1	For using $T < 0.6 < 1.25$ $T \rightarrow$ distance = $4a + (a - x)$; may be implied by $1.6 < x < 0.6 < 1.25$
	B: 4 - 4 - 11 - 1 - 01		distance < 2.0
	Distance travelled is 1.81 m	A1	CAO, no wrong working
()		[3]	Forming it and in (0.6 a) and an an following form (ii)
(v)		M1	For using $\dot{x} = -an \sin(0.6n)$, where <i>n</i> follows from (ii)
			Or using $v^2 = n^2(a^2 - x^2)$, where <i>n</i> follows from (ii) and <i>x</i> follows from (iv)
			or using $\dot{x} = an \cos(0.6n)$ if $x = a\sin(0.6n)$ used in (iv), where n follows from (ii)
	Speed is 4.29 ms ⁻¹ .	A1	Condone -4.29
		[2]	

Q7, (Jun 2013, Q1)

Use of $T = \frac{\lambda e}{l}$	M1	Attempt at one tension; allow use of x	allow 2 <i>l</i> for M1
	A1	$\frac{20(d-0.4)}{0.4}$ or $\frac{30(d-0.6)}{0.6}$	either term seen, accept in terms of x
Weight = tension $1 + tension 2$	M1		condone Wg and W/g
	A1	100 = 50d - 20 + 50d - 30	fractions and brackets removed
(AW =) 1.5 (m)	A1		
	[5]		

Q8, (Jun 2014, Q2)

40/ 10	<u>, (</u>						
(i)	By energy	M1*	Attempt at elastic energy	Allow M1 for $\frac{30y^2}{(2) \times 0.6} = kd$			
	$\frac{30(d-0.6)^2}{3.110(d-0.6)} = 48 \times d$	A1	l .	$\frac{30x^2}{2 \times 0.6} = 48(x + 0.6)$			
	$2 \times 0.6 \\ 25d^2 - 78d + 9 = 0$	*M1	get 3 term quadratic and attempt to solve	2×0.6 allow 1 slip or $25x^2 - 48x - 28.8 = 0$			
	or $30d^2 - 93.6d + 10.8 = 0$						
	(d=) 3 (m)	A1 [4]	ignore $d = 0.12$, unless given as answer	(x =) 2.4 leading to $(d =) 3$			
		3.61		n :: n 12 06:1			
(ii)	Use $F = ma$	M1	0.1.1.40	allow missing g , allow 1.3 or 0.6 to be			
	$48 - \frac{30 \times (3 - 0.6 - 1.3)}{0.6} = (\pm) \frac{48}{0.6} a$	A1ft	ft their '3'	omitted			
	0.6			Using energy:			
	(a =) (+/-) 1.43	A1	1.4291666	$a = v \frac{dv}{dx} = \frac{g}{48} (50x - 72)$ M1A1			
	upwards	A1 [4]	depends on a being right				